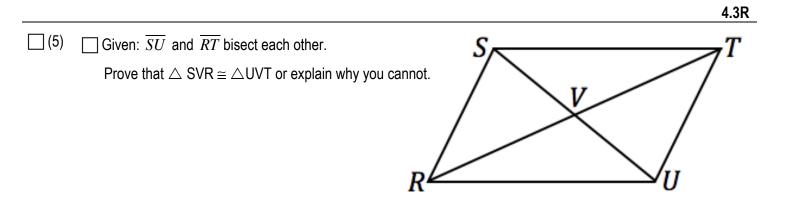
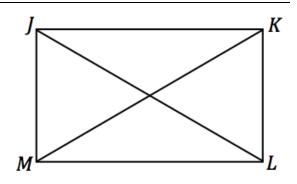

Geome	try Regents Lomac 2015-2016	Date <u>11/16</u> due <u>11/17</u>	Congruent Triangles SAS Proofs 4.3R
Name LO:	I can use the SAS shortcut for pr or not two triangles are congruen		ngruent to determine whether
	NOW On the back of this packe	et	
□ (1)	Given: The diagram as marke	ed	A O
	Prove that $\triangle ABC \cong \triangle RSQ$	or explain why you cannot.	C B R S S S R S S S R R S S R R S
	I know that	because	
(2)	Given: \overline{KM} and \overline{JN} bisect e	each other	N
	Prove that $\triangle JKL \cong \triangle NML c$		K L M
	I know that	because	

		4.3R	
(3)	Given: $m \angle R = 25^{\circ}$, $RT = 7^{\circ}$, $SU = 5^{\circ}$, $ST = 5^{\circ}$	S	
	Prove that $ riangle RSU \cong riangle RST$ or explain why you cannot.	7" 5" 5" R 25° U	-


I know that	because	

 $\square (4) \qquad \square \text{ Given: } \overline{AE} \text{ bisects } \angle \text{BCD, } \overline{BC} \cong \overline{DC} .$

Prove that $\triangle CAB \cong \triangle CAD$ or explain why you cannot.

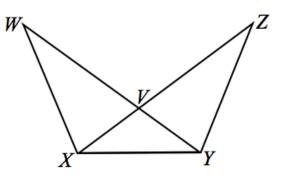


I know that	because

I know that	because	

 $\square (6) \qquad \square \text{ Given: } \overline{KL} \perp \overline{LM} \text{ , } \overline{JM} \perp \overline{LM} \text{ , and } \overline{JM} \cong \overline{KL}$ Prove that $\triangle JML \cong \triangle KLM$ or explain why you cannot.

3


I know that	because

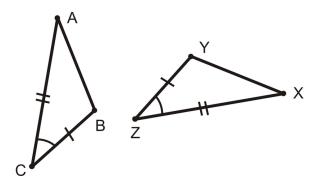
4

(7)	$\Box \text{ Given: } \overline{BF} \perp \overline{AC} \text{ , } \overline{CE} \perp \overline{AB}$ Prove that $\triangle \text{BED} \cong \triangle \text{CFD} \text{ or expl}$	ain why you cannot.	E D F
	I know that	because	$B^{L} \sim C$

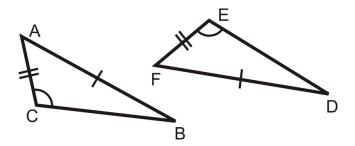
 $\square (8) \qquad \square \text{ Given: } \angle VXY \cong \angle VYX.$


Prove that $riangle VXW \cong riangle VYZ$ or explain why you cannot.

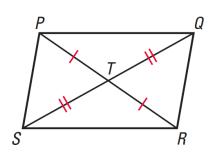
I know that	because

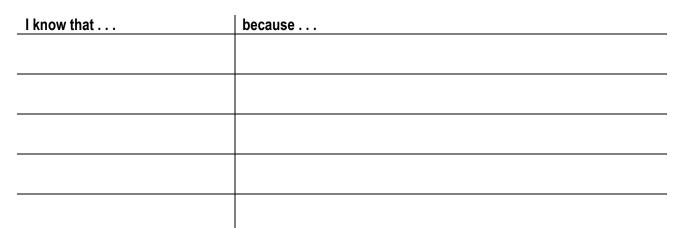

(9) Exit Ticket

ON THE LAST PAGE

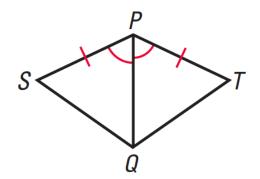

(1) Given the diagram at right

 $\mathsf{PROVE}: \bigtriangleup \mathsf{ABC} \cong \bigtriangleup \mathsf{XYZ}$




I know that	because	

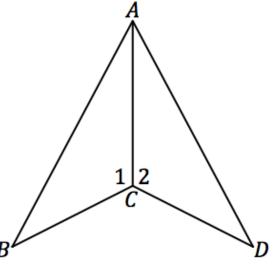
 $\square (2) Given the diagram at right$ $PROVE: <math>\triangle ABC \cong \triangle FDE$



because

$$\Box^{(4)} \quad \text{GIVEN} \triangleright \overrightarrow{PQ} \text{ bisects } \angle SPT,$$
$$\overrightarrow{SP} \cong \overrightarrow{TP}$$
$$\text{PROVE} \triangleright \triangle SPQ \cong \triangle TPQ$$

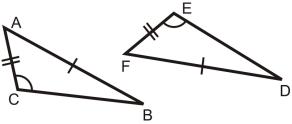
I know that	because


Exit Ticket	Name	Date	Per	4.3R

(1) The LO (Learning Outcomes) are written below your name on the front of this packet. Demonstrate your achievement of these outcomes by doing the following:

 $\Box \text{ Given: } \angle 1 \cong \angle 2, \ \overline{BC} \cong \overline{DC}$

.

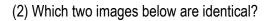

Prove that $\triangle ABC \cong \triangle ADC$ or explain why you cannot.

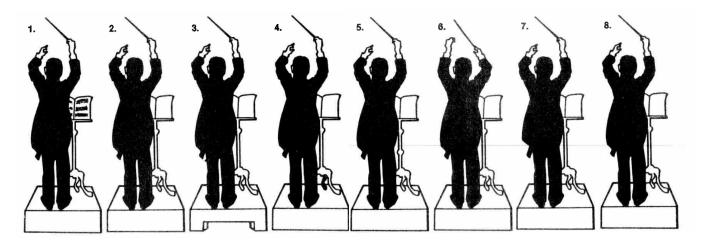
7

8			
DO NOW	Name	_ Date	_Per

(1a) Can we use the SAS congruence shortcut to show that \triangle ABC maps to \triangle FDE? Explain.

В


4.3R


Е

D

(1b) Can we use the SAS congruence shortcut to show that $\triangle ABC$ maps to $\triangle DEF$? Explain.

С

